• Author : Russell Kelly

 
 

IPv4 & IPv6 MPLS VPN Configuration Guide

IPv4 and IPv6 VPN Overview   RFC 4364 allows for Service Providers and Enterprises to use their backbone infrastructure to provide the services to multiple such customers, or internal departments, while: Maintaining privacy Allowing for IP address overlap amongst customers Constrained route distribution – so that only the service provider routers which need the routes have them.   This is achieved through the usage of VRFs, Route Distinguishers and Route-Targets   The IPv4/IPv6 VPN Standard RFC 4364 does the following: Specifics an BGP IPv4 VPN control plane with a MPLS data plane BGP control plane, new address family to advertise...
Continue reading →

EVPN VXLAN Design Guide

EVPN VXLAN Design Guide   A Detailed Overview of the EVPN & VxLAN Protocols, Route Types, Use-Cases and Architectures   1. Introduction This document describes the operation and configuration of BGP EVPN Services over a VXLAN (Virtual eXtensible LAN) overlay on Arista platforms. The focus in this design guide is VxLAN as the protocol for the data-plane encapsulation for the overlay tunnels, and the functionality of the Multiprotocol BGP (MP-BGP) EVPN address-family for control plane signaling in the overlay.  MP-BGP EVPN is not only used for advertising MAC addresses, MAC and IP bindings and IP prefixes across the overlay; it...
Continue reading →

Arista Layer 2 VTEP EVPN VxLAN Route Type-1 Support

Arista Layer 2 VTEP EVPN Route Type-1 Support   Arista Layer 2 EVPN VTEP Inter-Operation With A/A Multi-homed Third-Party Layer 3 EVPN VXLAN VTEPs   Introduction   This document will explain the configurations required to support inter-working with EVPN VXLAN A/A multi-homed VTEPs, also known as L2 ECMP in VxLAN EVPN.   Currently, EOS uses MLAG is used to achieve Multi-homing in EVPN VxLAN Topologies, with an any-cast VxLAN VTEP configured on the MLAG pair, and as such does not need to support EVPN Multihoming Tx (Type-1 route generation). EOS can however install received Type-1 routes and can...
Continue reading →

Multi-Tenant EVPN VXLAN IRB Configuration & Verification Guide (iBGP Overlay eBGP Underlay)

Multi-Tenant EVPN VXLAN IRB Configuration & Verification Guide   Symmetric and Asymmetric IRB With VLAN Based and VLAN Aware Bundle Services Using an iBGP Overlay and eBGP Underlay Topology Logical Diagrams Tenant-A: Symmetric IRB Tenant-B: Asymmetric IRB Platform Support: https://www.arista.com/en/support/product-documentation/supported-features Topology Overview   In the symmetric and asymmetric IRB setups illustrated in the figures above;  for tenant-a four subnets are stretched across the two MLAG domains; with two subnets (vlan 10 – 10.10.10.0/24 and vlan 11 – 10.10.11.0/24) configured as a VLAN based service, and two other subnets (vlan 12 – 10.10.12.0/24 and vlan 13 – 10.10.13.0/24) as a vlan-aware...
Continue reading →

Multi-Tenant EVPN VXLAN IRB Configuration & Verification Guide (eBGP Overlay & Underlay)

Multi-Tenant EVPN VXLAN IRB Configuration & Verification Guide   Symmetric and Asymmetric IRB With VLAN Based and VLAN Aware Bundle Services Using an eBGP Overlay and eBGP Underlay Topology Logical Diagrams Tenant-A: Symmetric IRB Tenant-B: Asymmetric IRB Platform Support: https://www.arista.com/en/support/product-documentation/supported-features Topology Overview   In the symmetric and asymmetric IRB setups illustrated in the figures above;  for tenant-a four subnets are stretched across the two MLAG domains; with two subnets (vlan 10 – 10.10.10.0/24 and vlan 11 – 10.10.11.0/24) configured as a VLAN based service, and two other subnets (vlan 12 – 10.10.12.0/24 and vlan 13 – 10.10.13.0/24) as a vlan-aware...
Continue reading →

L3 EVPN VXLAN Configuration Guide

L3 EVPN VXLAN Configuration Guide   EVPN VXLAN Type-5 Layer 3 VPN  (With Dual-Homed Layer 2 and Layer 3 Sites) Overview Ethernet VPN (EVPN) is an extension of the BGP protocol introducing a new address family: L2VPN (address family number 25) / EVPN (subsequent address family number 70). It is used to exchange overlay MAC and IP address reachability information between BGP peers using type-2 routes, but additionally,  EVPN supports the exchange of layer 3 IPv4 and IPv6 overlay routes through the extensions described in (type 5 EVPN routes). An IP VRF is used on a VTEP router for...
Continue reading →

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: