• Author : Jeffrey Nelson

 
 

Multi-Domain EVPN VXLAN

Description This feature provides the ability to interconnect EVPN VXLAN domains. Domains may or may not be within the same data center network, and the decision to stretch/interconnect a subnet between domains is configurable. The following diagram shows a multi-domain deployment using symmetric IRB. Note that two domains are shown for simplicity, but this solution supports any number of domains. Within domain #1 and domain #2, VTEPs exchange EVPN reachability as normal. Between domains, gateway nodes advertise intra-domain EVPN routes with the gateway inserting itself as the nexthop. From the perspective of a gateway node, there is the local EVPN...
Continue reading →

EVPN L3 Gateway

Description This feature adds control plane support for inter-subnet forwarding between EVPN networks. This support is achieved by advertising received EVPN IP Prefix routes (Type-5) with next-hop self. VXLAN and MPLS encapsulation are supported, and the encapsulation type used for advertised routes is dependent on the encapsulation type configured for EVPN peering. The following diagram shows an example topology where an EVPN VXLAN network exchanges Type-5 routes with an EVPN MPLS network.   Within the EVPN VXLAN and EVPN MPLS network, EVPN routes are exchanged as normal. The L3 gateway functionality is achieved by GW1/2 and GW3/4 advertising received type-5...
Continue reading →

EVPN Internetworking with IPVPN

Description This feature adds control-plane support for inter-subnet forwarding between EVPN and IPVPN networks. It also introduces a new BGP path-attribute, D-PATH, that may be used for loop prevention when internetworking between EVPN and IPVPN domains. The supported transport type for IPVPN networks is MPLS, while EVPN networks may use MPLS or VXLAN. The following diagram shows an example topology where a DC EVPN-VXLAN cloud is connected to an MPLS-VPN cloud via border leaf nodes peering with both EVPN and IPVPN. The MPLS-VPN cloud is then connected to a DC EVPN-MPLS cloud, where the border leaf nodes peer with both...
Continue reading →

VXLAN Auto Flood-List Construction

Description VXLAN flood-lists are typically configured via CLI or learned via control plane sources such as EVPN. The introduction of wireless access points (APs) into the VXLAN data-plane and the desire to minimize AP configuration led to the introduction of a new feature to learn VXLAN flood-lists via the data-plane. When a VXLAN packet is received from a remote VTEP on a new VNI, that remote VTEP is added to the flood-list for that VNI. When all of the MACs behind a remote VTEP have aged out or been removed, that remote VTEP is no longer considered active and it...
Continue reading →

VXLAN Static and EVPN Dual Configuration

Description Configuration of VXLAN overlay using EVPN allows for extension of Layer-2 (L2) or Layer-3 (L3) networks across multiple data centers. VXLAN is configured on Provider Edge (PE) switches to create an overlay network to tunnel customer traffic between networks connected to the PE switches, while EVPN acts as the control plane by advertising reachability amongst the PE switches via EVPN route types 1-5. In some scenarios, one or more of the PE switches facing the customer network may not support EVPN. For example, the PE switch may be a Linux-based software VTEP (VXLAN Tunnel End-Point) running on a server...
Continue reading →

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: