• Tag : EVPN

 
 

Does 7050SX support L3 vxlan evpn?

I am not able to import evpn from bgp vrf configuration on 7050SX, but able to do same on 7280R2. 7050SX-2(config-router-bgp-vrf-backup-tenant)#route-target import ? ASN(asplain):nn or ASN(asdot):nn or IP-address:nn Route Target Do you mind confirm that whether 7050SX support l3 evpn? Thank you!

BGP VPN and Inter-VRF Local Route Leaking Support for default VRF

Description This feature extends the BGP Layer 3 VPN Import/Export and VRF Route Leaking functionality to “default” VRF. Currently, these functionalities are only supported for non-default VRF. Please refer to this TOI for more details on the support for non-default VRF. EOS supports the following two types of VPN configurations and this feature is applicable for both. RFC 4364 BGP/MPLS L3 VPN (TOI Link) BGP L3 EVPN (TOI Link) This feature is available when configuring BGP in the multi-agent routing protocol model. Platform Compatibility DCS-7250 DCS-7050TX/SX/QX DCS-7060X DCS-7280R DCS-7500R Configuration Configuring BGP VPN in default VRF is similar to how it is...
Continue reading →

EVPN VXLAN All-Active Multihoming

Description Ethernet VPN (EVPN) networks normally require some measure of redundancy to reduce or eliminate the impact of outages and maintenance. RFC7432 describes four types of route to be exchanged through EVPN, with a built-in multihoming mechanism for redundancy. Prior to EOS 4.22.0F, MLAG is available as a redundancy option for EVPN with VXLAN, but not multihoming. EVPN multihoming is a multi-vendor standards-based redundancy solution that does not require a dedicated peer link and allows for more flexible configurations than MLAG, supporting peering on a per interface level rather than a per device level. It also supports a mass withdrawal mechanism...
Continue reading →

EVPN VxLAN IPV6 Overlay TOI

Description Starting with EOS release 4.22.0F, the EVPN VXLAN L3 Gateway using EVPN IRB supports routing traffic from IPV6 host to another IPV6 host on a stretched Vxlan VLAN.  This TOI explains the EOS configuration and show commands. Platform compatibility Platform Supporting ND Proxy and ND Suppression DCS-7280R/7280R2 DCS-7050CX3-32S-F DCS-7050SX3-48YC12-F Platform Compatibility (No ND Proxy, No ND Suppression) DCS-7020R DCS-7260X/7260X3 DCS-7050/7050X/7050X2 DCS-7060X/7060X2 DCS-7160 DCS-7250 DCS-7500R/7500R2/7500E DCS-7300X/DCS-7320X Configuration Enable IPv6 Routing First, enable global IPv6 unicast routing.  Then enable IPv6 unicast routing for each VRF. hs482(config)#ipv6 unicast-routing hs482(config)#ipv6 unicast-routing vrf tenant-c Virtual Router MAC (config-t)#ip virtual-router mac-address <mac> IPV6 SVI If...
Continue reading →

EVPN MLAG Shared Router MAC

Description “MLAG Domain Shared Router MAC” is a new mechanism to introduce a new router MAC to be used for MLAG TOR Leaf pairs.  The user can have either explicitly configured MAC address of their choice or use the system generated MLAG system-id for this purpose.   When the MLAG shared MAC is set as the MLAG system ID value, the new shared MAC has the following properties: Unlike the bridge MAC which is different on each peer, this MLAG Domain shared router MAC has the same exact value on MLAG peers forming the same MLAG domain. This new shared...
Continue reading →

Layer 2 Data Center Interconnect – Reference Designs

Introduction VxLAN is a popular choice for extending Layer 2 both intra and inter DC using overlays. Arista offers multiple control plane choices for VxLAN: Static HER, CVX and EVPN. In this article, two approaches to designing a L2 DCI over a L3 underlay are discussed. High-level technical details of each design approach is described first, followed by a comparison of the two options along with their typical use cases. Design 1: Multi-domain Overlay In this design, two overlay domains are identified: DC Fabric domain: This is the VxLAN domain within the DC Layer 3 Leaf-Spine Fabric with Leafs acting...
Continue reading →

EVPN VXLAN Design Guide

A Detailed Overview of the EVPN & VxLAN Protocols, Route Types, Use-Cases and Architectures 1. Introduction This document describes the operation and configuration of BGP EVPN Services over a VXLAN (Virtual eXtensible LAN) overlay on Arista platforms. The focus in this design guide is VxLAN as the protocol for the data-plane encapsulation for the overlay tunnels, and the functionality of the Multiprotocol BGP (MP-BGP) EVPN address-family for control plane signaling in the overlay.  MP-BGP EVPN is not only used for advertising MAC addresses, MAC and IP bindings and IP prefixes across the overlay; it provides efficiencies in the way learning...
Continue reading →

Arista Layer 2 VTEP EVPN VxLAN Route Type-1 Support

Arista Layer 2 VTEP EVPN Route Type-1 Support   Arista Layer 2 EVPN VTEP Inter-Operation With A/A Multi-homed Third-Party Layer 3 EVPN VXLAN VTEPs   Introduction   This document will explain the configurations required to support inter-working with EVPN VXLAN A/A multi-homed VTEPs, also known as L2 ECMP in VxLAN EVPN.   Currently, EOS uses MLAG is used to achieve Multi-homing in EVPN VxLAN Topologies, with an any-cast VxLAN VTEP configured on the MLAG pair, and as such does not need to support EVPN Multihoming Tx (Type-1 route generation). EOS can however install received Type-1 routes and can...
Continue reading →

Multi-Tenant EVPN VXLAN IRB Configuration & Verification Guide (iBGP Overlay eBGP Underlay)

Multi-Tenant EVPN VXLAN IRB Configuration & Verification Guide   Symmetric and Asymmetric IRB With VLAN Based and VLAN Aware Bundle Services Using an iBGP Overlay and eBGP Underlay Topology Logical Diagrams Tenant-A: Symmetric IRB Tenant-B: Asymmetric IRB Platform Support: https://www.arista.com/en/support/product-documentation/supported-features Topology Overview   In the symmetric and asymmetric IRB setups illustrated in the figures above;  for tenant-a four subnets are stretched across the two MLAG domains; with two subnets (vlan 10 – 10.10.10.0/24 and vlan 11 – 10.10.11.0/24) configured as a VLAN based service, and two other subnets (vlan 12 – 10.10.12.0/24 and vlan 13 – 10.10.13.0/24) as a vlan-aware...
Continue reading →

Multi-Tenant EVPN VXLAN IRB Configuration & Verification Guide (eBGP Overlay & Underlay)

Multi-Tenant EVPN VXLAN IRB Configuration & Verification Guide   Symmetric and Asymmetric IRB With VLAN Based and VLAN Aware Bundle Services Using an eBGP Overlay and eBGP Underlay Topology Logical Diagrams Tenant-A: Symmetric IRB Tenant-B: Asymmetric IRB Platform Support: https://www.arista.com/en/support/product-documentation/supported-features Topology Overview   In the symmetric and asymmetric IRB setups illustrated in the figures above;  for tenant-a four subnets are stretched across the two MLAG domains; with two subnets (vlan 10 – 10.10.10.0/24 and vlan 11 – 10.10.11.0/24) configured as a VLAN based service, and two other subnets (vlan 12 – 10.10.12.0/24 and vlan 13 – 10.10.13.0/24) as a vlan-aware...
Continue reading →

L3 EVPN VXLAN Configuration Guide

L3 EVPN VXLAN Configuration Guide   EVPN VXLAN Type-5 Layer 3 VPN  (With Dual-Homed Layer 2 and Layer 3 Sites) Overview Ethernet VPN (EVPN) is an extension of the BGP protocol introducing a new address family: L2VPN (address family number 25) / EVPN (subsequent address family number 70). It is used to exchange overlay MAC and IP address reachability information between BGP peers using type-2 routes, but additionally,  EVPN supports the exchange of layer 3 IPv4 and IPv6 overlay routes through the extensions described in (type 5 EVPN routes). An IP VRF is used on a VTEP router for...
Continue reading →

Spine-Leaf BGP EVPN Best Practice

Hello I’m seeking for a white paper\best practice document that can cover deploying a topology of spine-leaf data center. The points i’m seeking clarifications are 1. underlay L3 connectivity – is IGP required to be configured between spine and leafs. 2. is multicast a must between spine and leaf for control plan operation? (forwarding BUM packets?) 3. with vxlan, are there any problems using mlags? how can i advertise a certain MAC address is available from two different VTEPs and encapsulate into vxlan from both connections? 4. in terms of configuration, how can i deploy such a scenario? 5. unconventional as it...
Continue reading →

EVPN Configuration – Layer 2 EVPN design with Type-2 routes

Introduction This document describes the operation and configuration of BGP EVPN with a VXLAN forwarding plane, for the construction of multi-tenant Layer 2 networks, termed L2VPNs within this document, over a layer 3 leaf-spine network. The configuration and guidance within the document unless specifically noted are based on the platforms and EOS releases noted in the table below Platform Software Release 7050X Series EOS release 4.18.1 7050X2 series EOS release 4.18.1 7060X Series EOS release 4.18.1 7160 series EOS release 4.18.1 7280R/7500R EOS release 4.18.1 Leaf spine underlay architecture EVPN with a VXLAN forwarding plane provides the ability to decouple...
Continue reading →

Access to manuals

Hi there! Currently I’m doing some research in new data center networking technologies. I downloaded vEOS image and built basic topology using Unetlab. Now I want to configure EVPN, but I couldn’t find any manuals on it. For some reason this one – https://eos.arista.com/eos-4-18-1f/evpn-vxlan/ is protected. How can I get it?

EVPN extension to BGP using VXLAN

Ethernet VPN (EVPN) is an extension of the BGP protocol introducing a new address family: L2VPN (address family number 25) / EVPN (subsequent address family number 70). It is used to exchange overlay MAC and IP address reachability information between BGP peers within a tunnel [1]. In EOS 4.18.1F VXLAN tunnel support was introduced [2]. The available features are: Single-homing L2 routes (EVPN type 2 and type 3), with MLAG used as the L2 multi-homing solution. Multi-homing L2 routes (EVPN type 1 and type 2) are received and installed, with up to two all-active remote paths per destination (additional paths...
Continue reading →

EVPN Control-Plane support for VxLAN

Just wondering if there is EVPN Control-Plan extensions planned for support (and when) with VxLAN Leaf devices like ahem, other vendor’s are doing.  Stretched fabrics (over wan) are becoming popular as an escape from OTV and prior ilk are where this seems most relevant, and something I’m seeing interest in where flood control can/should be most relevant.

Follow

Get every new post on this blog delivered to your Inbox.

Join other followers: